Interference to the TDRS-H,I,J System from the Fixed Service, Mobile Service, Fixed Satellite Service, and Inter-Satellite Service

Second Ka-Band Utilization Conference September 24 - 26, 1996 Florence, Italy

Linda Harrell (STel),
Badri Younes (NASA CLASS Project Manager)

Introduction

- NASA, ESA, and NASDA Data Relay Satellites (DRSs) will be operating Inter-Satellite Links (ISLs) in the following bands:
 - Forward Band: 22.55 23.55 GHz for DRS to LEO user spacecraft ISLs
 - Return Band: 25.25 27.5 GHz for LEO user spacecraft to DRS ISLs
- **DRS ISLs will be susceptible to interference from**
 - Fixed Service (FS)
 - Mobile Service (MS)
 - Fixed Satellite Service (FSS)
 - other ISLs

TDRSS Planned Use of Ka-Band

Frequency Allocations & Usage 💛

Forward ISL

Outline

- **Interference Environments**
 - Other Satellite Systems
 - » Forward and Return Band
 - Terrestrial FS Systems
 - » Forward Band
 - » Return Band
 - **Point-to-Point (P-P)**
 - **□** Point-to-Multipoint (P-MP)
- **Simulation Tools**
- **Sample Results**

Satellite Systems Operating in TDRSS Bands

Terrestrial FS Interference

■ Forward Band

 Characteristics of the FS station emissions are summarized in Recommendation ITU-R F.758

Return Band

- **P-P**
 - » Protection of DRSs from the emissions of FS stations is being studied by ITU JAH
 - » JAHWP 7B-9D is developing a recommendation to limit FS emissions in the direction of specific DRS orbit locations
 - » See "Technical and Operational Considerations That Should Be Adopted by the Fixed Service to Facilitate Sharing With the Inter-Satellite Service in the Frequency Band 25.25 - 27.5 GHz"

Terrestrial FS Interference (Cont)

- Return Band (Cont)
 - P-MP
 - » Certain types of Local Multipoint Communication Systems (LMCS)/Local Multipoint Distribution Systems (LMDS) cause less interference than other types
 - **Low power LMCS/LMDS cause unacceptable** interference to DRSs at low elevation angles
 - **¤** Higher power LMCS/LMDS cause unacceptable interference to DRSs at all elevation angles
 - » NASA supports ITU studies to determine the characteristics of LMCS/LMDS systems that can share with DRS systems

CLASS Project

- The NASA GSFC Communications Link Analysis and Simulation System (CLASS) Project provides resources for evaluating the performance of space communication links for
 - NASA's Space Network (SN), Ground Network (GN), and Deep Space Network (DSN)
 - and other agencies
- **CLASS** project developed
 - interference environment models for TDRSS ISLs
 - software tools to assess communications performance
 - » CAGE
 - **¤** discussed in separate presentation
 - **» Other Simulation Tools**
 - **Assess effects of terrestrial interference and scattering**

Sample Result

Interference Statistics for a TDRSS Return ISL in the Event of Fixed Service Mainbeam Interference

